Success Stories

How orange trees are irrigated with the help of the Solar HES, controlled remotely


1200 X 630 Px Orange Tree Irrigation 4 Inch Solar HES MallorcaAn orange orchard on the island of Mallorca is reliably irrigated from a 90-meter-deep well using Franklin Electric’s High Efficiency Solar Well System. The system is installed and maintained remotely using the Franklin app.


Solar system for irrigation

A farm in Pui on the island of Mallorca, Spain, has chosen Franklin Electric‘s Solar High Efficiency System (HES) to irrigate an orange orchard with about 40 trees. The system is powered by six 330-watt solar panels. In combination with the HES, the approx. 2 kW solar field output delivers so much water that, in addition to irrigating the trees, the water requirements of a guest house are also met. Here, the pool is now also filled and the lawns irrigated.

Installed was a 1.1 kW Solar High Efficiency System with the following components:

  • 4" Encapsulated synchronous submersible Solar motor
  • 4" submersible pump VS4
  • Variable frequency drive DrivE-Tech MINI Solar MP
  • flow switch


Up to 21% energy savings

In times of rising energy costs, new systems put more and more emphasis on the best possible efficiency. Here, Franklin Electric has set a new benchmark with its High Efficiency Systems (HES) up to 250 kW. Compared to standard asynchronous motors, energy savings up to 20% have been achieved in numerous systems installed.

But how are these energy savings achieved?
It is the combination of perfectly matched components and their control: motor, pump, frequency drive and output filter. Most importantly, it is the submersible motor’s permanent magnet equipped rotor that eliminates rotor losses thus significantly reducing motor current and heat rise. In many cases, reduced motor current equals less drop cable cross sectional area further reducing overall installation cost. Excellent partial-load efficiency of permanent magnet motors allows the entire power range to be covered with only a few different motor sizes, thus offering important stock-keeping advantages.


Maintenance and control via app

A major advantage of the system is that it can be controlled remotely via the mobile app. The owners of the estate are only temporarily on the island, but can always monitor and control their pumping system themselves via the app.

Franklin Electric not only supports its customers in the run-up to an investment and helps them select the right system and associated components, but also stands by the customer‘s side during commissioning. Any problems that arise can also be analyzed and remedied remotely by Franklin engineers.

Thus, the commissioning of this system can also be done remotely. The local distributor Likitech and Franklin Electric service engineers guided the customer step-by-step through the installation of the drive and motor.

How the installation of the HES changed the farm life of Panhurst Farms in Morocco


2021 01 HES Installation Morocco

Panhurst Farms in Marrakech / Morocco installed a Solar High Efficiency irrigation system at the beginning of the year. The expectations for this system were exceeded, as the system works even more effectively than expected. It not only provides water, but also impacts the livelihood of many people, education, health and above all hope in one of the poorest areas in Morocco.


Agriculture against poverty in the dry continental climate of Morocco

Without sufficient resources, the endless cycle of poverty in Morocco continues. The agricultural project is dependent on support. Franklin Electric has therefore donated the technical equipment to operate the well on Panhurst Farm.

The installed 6" High Efficiency Solar System with 18,5 kW nominal power consists of the following components:

  • Encapsulated 6" Permanent magnet motor (max. 18.5 kW / 380 V / 3000 rpm)
  • Submersible well pump (VS 30/13, 50 Hz)
  • Frequency converter Industrial IP54 / 31 A
  • Output filter (Sinusodial IP54 / 100 Hz)
  • Flow switch

The system is operated in an existing well with a depth of 150 m and delivers approx. 30 m³/h of water. This is at least 210 m³ per day. On clear days this can be much more, because then the system continuously pumps water from the well. The High Efficiency System is driven by the energy generated by 80 solar panels.

The system was installed by a partner of Franklin Electric, that accompanied Panhurst Farms from the selection of the right system, through the installation of the individual components, to the final commissioning.

The system has been running stable and reliable since installation and has changed the way people work and live at Panhurst Farms.


"This self-running installation has saved us both precious time and much money that we would have otherwise spent on butane gas bottles, maintenance, and repairs on our vertical shaft-driven well pump. Your system has greatly decreased our personal stress load as well as sent our farm on a track toward sustainability. Thank you very much for your huge generosity and genuine care for us and those we serve." (Farr Family - founder of the farm)


Panhurst Farms

The Panhurst Farms agricultural project is located in a region of about 30 villages where poverty is high and is accompanied by illiteracy, limited educational opportunities and poor health.

Panhurst Farms aims to break the cycle of poverty by offering the rural population a real perspective by creating a working environment where employees receive income, mentoring and leadership responsibility. This way of sharing in prosperity through job creation minimizes dependency, preserves the dignity of each individual and empowers people to become agents of lasting change in their communities and society - one family at a time. The ultimate goal is lasting personal, social, economic and ecological change! Mentoring is tailored to the needs of each individual and promotes their talents.



Energy savings of 45 % in a waterwork due to HES installation


HES Installation Waterworks CZ EN

The initial situation

The Waterworks of the City of Brno (Brnenske vodovody a kanalizace a.s.) asked the company PUMPA a.s., a customer of Franklin Electric, to evaluate the existing pumping stations in the cities of Březové and Svitavou. The aim was to upgrade the existing system to the latest technical standard and to find possible energy saving potentials. When the team from PUMPA a.s. arrived on site, the first step was to select a well for the project, where the energy audit would be carried out and which would be representative of the cities Březové and Svitavou.

The selected well was equipped with a pump with a 45 kW asynchronous electric motor. The pump worked at an operating point of Q=54 l/s and H=34 m. The adjustments to the required parameters (Q&H) were carried out mechanically (throttled) at that time. The annual power consumption at this well was 320.244 kWh. This corresponds to 0.2459 kWh/m³ per unit of water pumped.


The solution

In cooperation with the experts from Franklin Electric, the situation was analysed and the innovative High Efficiency System was chosen, which enables energy savings of up to 20 %.

The system consists of a 304SS NEMA synchronous motor, a frequency converter (VFD) and a suitable output filter. The system is supplemented by a suitable submersible pump.

High Efficiency System for the well:

  • Rewindable permanent magnet submersible motor 22 - 30 kW
  • Stainless steel submersible pump
  • Variable Frequency Drive IP66 (VFD)
  • Sinusoidal filter IP54
  • flow meter

After evaluating all the advantages that the High Efficiency System would bring, the Waterworks decided to invest in the modernisation of the well. The equipment was installed by Franklin Electric.

The result exceeded expectations

It did not take long for the results of the newly installed system to become apparent, as energy costs fell continuously. The total annual consumption of electrical energy at the well decreased to 176.466 kWh and the energy consumption per unit of water pumped was 0.1355 kWh/m³.

The new system has therefore exceeded expectations, achieving a 45 % saving in total electrical energy consumption per m³ of water pumped compared to the previous equipment.

The reason for this enormous energy saving is partly due to the fact that the originally installed system had to be modernized, and also the set-up had to be optimized. The second reason is the outstanding efficiency of the Franklin Electric High Efficiency System. It is the combination of perfectly matched components and their control: motor, pump, frequency drive and output filter. Most importantly, it is the submersible motor’s permanent magnet equipped rotor that eliminates rotor losses thus significantly reducing motor current and heat rise. In many cases, reduced motor current equals less drop cable cross sectional area further reducing overall installation cost.

The return on investment for this project had been calculated for 2 years. However, due to the high energy savings, the entire investment for the well system was amortized after only 1.5 years.

EHsp Horizontal Self-Priming Multistage Pumps in action at the Civil Protection in Longare (Vicenza Italy)


Header EN (1)

Franklin Electric is committed to man and nature, and so is the Municipal group of Civil Protection Colli Berici OdV in Longare. Franklin supports the association with equipment. A pump has now been installed to supply clean water to the group’s headquarters.


Clean water thanks to Franklin

The group of Civil Protection Colli Berici OdV needed a surface centrifugal pump and contacted Franklin Electric in Dueville with a request for a technical proposal. Franklin Electric had already supported the volunteer group in the past and immediately offered its help. In July 2020, after reviewing the situation, the Franklin Electric team installed a single-phase EHsp type self-priming pump with a 24-liter tank, pressure switch and pressure gauge.

The pump, which is connected to an existing pipe system, draws clean water from a well about 5 meters deep, which in turn is fed by a resurgent water vein. The pump was installed above the well in a soundproof and insulated cabin.

The water is used to wet the green area around the group headquarters and to wash the vehicles and equipment used during the activities. A water analysis is now organized to find out whether the water has drinking water quality. If so, it can be used to supply the hydraulic system of the headquarters.

Based on the technology of the horizontal multistage EH pump, the EHsp has a design innovation. A special elastic valve allows air that is present in the system to escape in less than 5 minutes and up to 7 meters of ascent. During start-up, this elastic valve, located in the first stage, opens to let the air escape from the system and suck water into the pump. When the pressure arrives at a certain point, the valve closes and the pump reaches the required performance. These functions make the pump a reliable partner on the premises of the Colli Berici group.

The headquarters of the Colli Berici OdV group is located in a 14th century house originally built by the Magistrato delle Acque of the Serenissima Republic of Venice to control and regulate the waters of the Bacchiglione (which flows below and next to the house) and the Tesina, which flows into the Bacchiglione at about 150 meters upstream.

Voluntary help in times of Corona

Since the Colli Berici OdV Civil Protection group is an integral part of the community in which it operates, during the recent Covid 19 pandemic, the volunteers kept the population informed of the government’s precautions and distributed protective masks, food and medicines to the elderly or needy people.

The group was contacted by some local tailors who donated washable and reusable masks. A sales campaign for the masks was then organized with the aim of raising funds for the purchase of two automatic defibrillators, which then were installed in easily accessible public spaces and are used in case of emergency (after appropriate training).

At Easter, during the shutdown, the group distributed the typical Italian Easter cake Colomba, and in agreement with the Municipality, to children under 6 years of age, who were particularly affected by the lock-down and were unable to meet peers. In gratitude, the children gave the volunteers pictures and drawings that now decorate the walls of the group’s headquarters.

The group has no direct source of income to finance the activities itself. Therefore, the members provide services that are not part of the standard activities defined by the Italian Civil Defense Office. These activities are carried out aside from the group in order to receive donations in return, which are used to purchase or maintain equipment such as safety equipment, tools or clothing.

For these reasons, the OdV Civil Protection Group Colli Berici is »proud to count on a partner like Franklin Electric, which has not only its technical competence but also a particular sensitivity to environmental issues, taking into account the needs of the municipality of Longare and the service ideals of the local Civil Protection Group«. the Mayor of Longare during the handover of the pump in July said.

Franklin motors maneuvering a submarine in 1000 meters under the sea


 Header EN

The technically unique submarine LULA1000 is the heart of the Rebikoff-Niggeler Foundation (FRN) , a non-for-profit organization for marine research based on the Island of Faial in the Azores/Portugal. On board are 5 Franklin Electric 4" encapsulated motors for the main drive as well as the maneuvers in all axes.

The interior has a special ergonomic design for maximum comfort during the long dives with an average duration of five hours. It has excellent maneuverability, even in difficult underwater terrain. Before the LULA1000 actually dives into the deep sea, multibeam sonar surveys are carried out to create bathymetric maps, which can then be used to identify areas of special interest.

LULA1000 is a stable work platform which was built according to the rules of the classification society Germanischer Lloyd (DNV-GL), who carries out yearly inspections and tests. These rules are very strict and have been established to guarantee a safe operation.

Looking for a cost-effective, yet reliable motor to drive the submarine’s positioning propellers, the designers approached Franklin Electric in 2009. Although the requested use lies well outside the scope of the original motor design, Franklin Electric engineers were appealed by the challenge to see their creation working on board of a submarine. With minimal modifications, Franklin Electric 4" submersible motors are now part of a 11-year success story.



The LULA1000 can take three people to a depth of 1000 m. The submarine is equipped with a large viewport of 1.4 m in diameter and the latest technology to collect oceanographic data and samples. It is perfectly prepared to take high-quality video and audio documentation about deep-sea animal life and behaviour. 


Franklin Electric motors on board

LULA 1000 is maneuvered by 5 submersible motors 2.2 kW each. The electrical winding design was modified to match the submarine on-board voltage, the mechanical design remained almost unchanged. Like the standard deep well motors, these motors were 100 % factory tested before being delivered to the building shipyard.The Franklin motors are used for the main drive and for the maneuvers in all axes. A planetary gear is used in the LULA1000 to drive a large diameter propeller. This is the main propulsion unit and has the advantage that the submarine can accelerate and stop quickly. Small, directly driven propellers are used for the lateral and vertical drive.

After more than 180 successful dives, these motors are now being replaced as part of a larger submarine overhaul.

In addition to the overarching vision of being able to offer clean drinking water to everyone, Franklin Electric also has the goal to contribute to the sustainability of the planet. Of course, this also includes the world’s oceans. Franklin is therefore happy to be able to support such projects.

Energy Savings was halved due to 6" High Efficiency System


Banner HES6 Waterworks EN

In times of rising energy costs, new systems put more and more emphasis on the best possible efficiency. Here, Franklin Electric has set a new benchmark with its High Efficiency Systems (HES) up to 150 kW. Compared to standard asynchronous motors, energy savings of more than 20% have been achieved in numerous systems installed.

This application example at a Waterworks Association in Germany proved that with the new method of operation with a 6" system the energy consumption was even halved. The reduction due to motor technology comes from a constant good efficiency throughout the entire performance range as well as perfectly balanced electronic components.

Franklin Electric installed and put into operation a 6" 15 kW Franklin Electric High Efficiency System, consisting of a 304SS NEMA synchronous submersible motor (3000 l/min), an IP66 Variable Frequency Drive (VFD) and an IP54 du/dt output filter.

Initial situation: ­

  • 10 stage 60 m³/h borehole pump with asynchronous submersible motor installed at 31 m below ground
  • Well diameter of 400 mm and depth of 50 m with continuous OBO filter
  • Minimum cooling flow alongside the motor is granted with the help of an additional cooling sleeve
  • The installation is remotely operated
  • Due to intake requirements as well as geological characteristics (water quality, well yield etc.) the pump has to constantly deliver 40 m³/h into a manifold pipe. Depending on additional wells being connected, the delivery head varies between 57 to 91 m. As these required duty points are not directly on the Q/H curve, the volume has to be throttled mechanically.
  • In two years observed the pump ran an average of approximately 200 hours per month with an input of P1 = ~20 kW (see graph 1).

New installation:

  • 5 stage 60 m³/h borehole pump (existing) with a Franklin Electric HES installed at 31 m including the existing cooling sleeve.
  • Due to limited space the electronic parts (VFD in IP66 and du/dt filter in IP 54) were mounted outside the existing cabinet directly to the wall.
  • At a rotating speed of 48.2 Hz, the newly chosen pump accurately meets the duty point I of 40 m³/h at 91 m (see green solid curve).
  • The rotational speed will be adjusted by the preset process reference 40 m³/h (read by existing flow control unit) in case of changing operational conditions/pumping heads.  Duty point II at 39.7 Hz for 40 m³/h at 57 m (see blue solid curve).
  • Due to the reduced rotation speed, the efficiency curve “moves” left resulting in an improved hydraulic efficiency compared to nominal load (see blue dotted curve).
  • These two duty points can now be achieved with an input of P1 = 9.5 and 16.2 kW respectively (see graph 2).


Energy savings through highly efficient system:

Due to this new method of operation, the pump now works at an average input of P1 = ~10.3 kW.  Thus, the energy consumption is halved (~ 80 % reduction caused by the speed control and ~20 % due to new motor technology).

The savings from motor technology are primarily due to the consistently good efficiency across the entire performance range and the perfectly matched electronic components (see graph 3).

The start-up went quickly and smoothly because of the custom-designed VFD software specifically developed by Franklin Electric.

Graphs1plus2 EN